django

Mike Cantelon

http://mikecantelon.com

Open Web Vancouver, 2008

http://mikecantelon.com
http://mikecantelon.com

Django in Brief

=» An “MTV"-based framework (model,
template, view)

=» Favourite web framework of Python’s
creator

=» Good balance between speed and
abstraction

=» Little “magic” to inject the unexpected

=» newforms abstracts form handling

Browser

Template

Database

From “A Rails/Django Comparison” by Ben
Askins and Alan Green

What’'s New

=»Trunk is kept production ready: no 1.0
release date yet

=» Unicode now used throughout

=» Templates now auto-escape by default
=» Google AppEngine runs Django

=» Oracle support added

What’s in the Works

=»Django Software Foundation

=»newforms in admin for easier
customization

=»Improvements to Django’s ORM
=» More books about Django

New to Python?

=»Culture distrusts cruft and hype
=»Fond of lightweight markup languages

=»Documentation often in
reStructuredText

=?»Python Docutils allow formatting to
HTML, etc.

=?»Play with reST at rst2a.com

Pluggable
Applications

Pluggable Lingo

=?»Projects are made up of one or more
“applications”

=»Applications can be site-specific or
designed for reuse

=>When designed for reuse, applications
are called “pluggable”

Pluggable Realm

=»The Django pluggable application
space is still a “Wild West”

=?»Plenty of room to get involved and
make a difference

Pluggable Anatomy

=»Pluggable apps are made up of
models, templates, template tags, and
Views

=»As loosely coupled with projects as
possible

Pluggable Architecture

=»Architecture may evolve
=>No machine-readable metadata

=2*Work is being done by django-hotclub
(find them in Google Groups and on
#django-hotclub IRC)

=»django-reusableapps is a project
being developed for management of
pluggable applications

Finding Pluggables

Standard Pluggables

=»admin: instant CRUD of model data

=»>databrowse: end user interface to
explore model data

=»auth: user authentication framework

=»syndication: RSS/Atom framework
->etc.

More Pluggables

=»Most pluggable applications live at
Google Code

=»Popular naming convention is
“‘django-<appname>"

=»Pluggable application suites like
Sphene provide apps guaranteed to
integrate well

Online Registries

=»http://djangoapps.org
=»http://djangoapps.net
=2»http://djangopluggables.com

=»http://code.djangoproject.com/wiki/
DjangoResources

http://djangoapps.org
http://djangoapps.org
http://djangoapps.net
http://djangoapps.net
http://djangopluggables.com
http://djangopluggables.com

Vetting Pluggables

=»Does the app try to do too much?

=»Google Code lets you examine before
downloading

=»|s there decent documentation?
=2>When was the last commit?

<»|s it actually pluggable?

If it contains “settings.py”
it’s probably not pluggable.

Managing Pluggables

=»Maintain a reference directory for
pluggables

=>This allows access to sample
templates, documentation, etc.

Installing Pluggables

=<»Many are dependent on Python
modules and other pluggable apps

=»Most pluggable apps and modules are
installed by “python setup.py install”

=»Others can be copied into your Python
path or project directory

=»Copy sample templates into your
project’s templates directory

Configuring

=?»Pluggables normally hook into your
project via “settings.py’ and “urls.py’

=2In “settings.py”, pluggables are added
to INSTALLED_APPS

=2 In “urls.py”, add to urlpatterns

Blogging-Related

django-tagging

=»Query tag intersections and unions

=»Del.icio.us-style URL-based tag
queries

=»Template tags for display of tags and
tag clouds

=»Special tag widget for newforms

django-diario

=»Full-featured blogging pluggable
=?»Leverages django-tagging
=»RSS/Atom feed support

= XML sitemap support

=?»Pretty permalinks

Basic Configuration

django-diario

=» Move to project’s base directory
=» Add “diario” to INSTALLED_APPS
=¥ Issue “python manage.py syncdb”

= Add “(r'Ablog/', include
(‘diario.urls.entries’)),” to urls.py

=» Copy templates from examples/
templates/simple to template directory

User Management/
Feedback

django-contact-form

=»Solicits feedback from users and
VISItors

=»Comes with no sample templates

=»Make sure to configure email settings
in your project (see Django project
documentaton)

Basic Configuration

django-contact-form

=» Move to project’s base directory

=» Add “contact-form” to INSTALLED_APPS
in “settings.py”

=» Add “(r'Acontact/’, include
(‘contact_form.urls')),” to urls.py

=2Set ACCOUNT_ACTIVATION_DAYS

=» In your project’s templates directory,
three templates need to be created...

Basic Configuration

django-contact-form (cont.)

=»Create contact_form/contact_form.txt

=»This is the email template and should
contain something like:

{{ name }}
{{ email }}

{{ body }}

Basic Configuration

django-contact-form (cont.)

=» Create contact_form/contact_form.html

=» This is the form template and should
contain something like:

<form method='POST'>

{{ form.as p }}

<input type='submit' value='Send'>
</form>

=» Put any message in contact_form/
contact_form_sent.html|

django-registration

=»Provides standard user registration
form and email activation functionality

=»Users visit accounts/register to create
accounts

=»Comes with no sample templates

=»Again, make sure email is configured

Basic Configuration

django-registration

=»Move to project’s base directory
=»Add “registration” to INSTALLED_APPS
=?»Issue “python manage.py syncdb”

=»Add “(r'Aaccounts/’', include
(‘registration.urls’)),” to urls.py

=2 In templates directory, five templates
need to be created

Basic Configuration

django-registration (cont.)

=»Create registration/
registration_form.html:

<form method='POST'>

{{ form.as p }}

<input type='submit' wvalue='Submit'>
</form>

Basic Configuration

django-registration (cont.)

=» registration/registration_complete.html is
any form response message

=» registration/activation_email_subject.txt is
activation email subject

=» registration/activation_email.txt is text for
an email, should include “http://
WWW.mysite.com/accounts/activate/
{{ activation key }}’

=» registration/activate.html is activation
message

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

django-profiles

=»The standard Django auth module
provides the ability to define a profile
model that will store profile data for
each user

=»django-profiles provides a user
interface to this model

=»Comes with no sample templates

Basic Configuration
django-profiles

=»Move to project’s base directory
=2»Add “profiles” to INSTALLED_APPS

=2You'll need to have made a site-
specific application

=»Define a profile model (see Chapter 12
of The Django Book, free online)

Basic Configuration

django-profiles (cont.)

=2 In mysite/models.py, for example, we could
put this profile model:

from django.contrib.auth.models import User

class MySiteProfile(models.Model):
user = models.ForeignKey(User, unique=True)
favorite band = models.CharField(maxlength=100, blank=True)
favorite cheese = models.CharField(maxlength=100, blank=True)
lucky number = models.IntegerField()

def get absolute url(self):
return ('profiles profile detail',
(), { 'username': self.user.username })
get absolute url = models.permalink(get absolute url)

Basic Configuration

django-profiles (cont.)

=2|n settings, add
AUTH_PROFILE_MODULE=

'mysite.MySiteProfile’
=2»Issue “python manage.py syncdb”

=2»Add “(r'Aprofiles/’, include
(‘profiles.urls’)),” to urls.py

=2 In templates directory, four templates
need to be created

Basic Configuration

django-profiles (cont.)

=»Create profiles/create_profile.html:

<form method='POST'>

{{ form.as p }}

<input type='submit' wvalue='Send'>
</form>

=»Use same profile as above for
profiles/edit_profile.html

Basic Configuration

django-profiles (cont.)

=»Create profiles/profile_detail.html:

{{ profile.favorite band }}

{{ profile.favorite cheese }}

{{ profile.lucky number }}

Basic Configuration

django-profiles (cont.)

=»Finally, create profiles/profile_list.html
(uses Django generic list view):

{% for profile in object list %}
Name: {{ profile.user }}, Number:
{{ profile.lucky number }} </1li>

{% endfor %}

User-Driven Content
AppPS

django-forum

=»SVN only, no installer
=?»Leverages django-registration

=»Comes with sample templates

Basic Configuration
django-forum
=» Move to project’s base directory

=» Add “forum” to INSTALLED_APPS
=» In settings.py, add FORUM_BASE="'/forum'
=» Issue “python manage.py syncdb”

=» Add “(r'Aforum/', include('forum.urls"),” to
urls.py

=» Copy sample templates into your template
directory

=» Add forum(s) via the Django admin

Other Apps

django-lifestream

=»Aggregates feeds from Twitter, Flickr,
etc.

=»Requires dateutil and Universal Feed
Parser modules

=»Requires Python 2.5 (easy to hack for
2.4)

=»Requires cron hook for updates

django-geo

=»Adds location awareness to objects

=<»Transparent geocoding

django-voting

=»Add voting functionality (Reddit, etc.)

=?»Includes specialized generic views
(including one for AJAX)

Poke around!

Resources

=»This talk:

http://mikecantelon.com/story/
django_pluggable_applications

=»James Bennett on creating pluggable

applications:
http://www.b-list.org/weblog/2008/mar/15/
slides/

=»The Django Book:

http://www.djangobook.com

http://mikecantelon.com/story/django_pluggable_applications
http://mikecantelon.com/story/django_pluggable_applications
http://mikecantelon.com/story/django_pluggable_applications
http://mikecantelon.com/story/django_pluggable_applications
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/

