
State of Pluggable Applications

Mike Cantelon
http://mikecantelon.com

Open Web Vancouver, 2008

http://mikecantelon.com
http://mikecantelon.com

An “MTV”-based framework (model,
template, view)
Favourite web framework of Python’s
creator
Good balance between speed and
abstraction
Little “magic” to inject the unexpected
newforms abstracts form handling

Django in Brief

From “A Rails/Django Comparison” by Ben
Askins and Alan Green

What’s New

Trunk is kept production ready: no 1.0
release date yet
Unicode now used throughout
Templates now auto-escape by default
Google AppEngine runs Django
Oracle support added

What’s in the Works

Django Software Foundation
newforms in admin for easier
customization
Improvements to Django’s ORM
More books about Django

New to Python?
Culture distrusts cruft and hype
Fond of lightweight markup languages
Documentation often in
reStructuredText
Python Docutils allow formatting to
HTML, etc.
Play with reST at rst2a.com

Pluggable
Applications

Pluggable Lingo

Projects are made up of one or more
“applications”
Applications can be site-specific or
designed for reuse
When designed for reuse, applications
are called “pluggable”

Pluggable Realm

The Django pluggable application
space is still a “Wild West”
Plenty of room to get involved and
make a difference

Pluggable Anatomy

Pluggable apps are made up of
models, templates, template tags, and
views
As loosely coupled with projects as
possible

Pluggable Architecture
Architecture may evolve
No machine-readable metadata
Work is being done by django-hotclub
(find them in Google Groups and on
#django-hotclub IRC)
django-reusableapps is a project
being developed for management of
pluggable applications

Finding Pluggables

Standard Pluggables

admin: instant CRUD of model data
databrowse: end user interface to
explore model data
auth: user authentication framework
syndication: RSS/Atom framework
etc.

More Pluggables

Most pluggable applications live at
Google Code
Popular naming convention is
“django-<appname>”
Pluggable application suites like
Sphene provide apps guaranteed to
integrate well

Online Registries

http://djangoapps.org
http://djangoapps.net
http://djangopluggables.com
http://code.djangoproject.com/wiki/
DjangoResources

http://djangoapps.org
http://djangoapps.org
http://djangoapps.net
http://djangoapps.net
http://djangopluggables.com
http://djangopluggables.com

Vetting Pluggables

Does the app try to do too much?
Google Code lets you examine before
downloading
Is there decent documentation?
When was the last commit?
Is it actually pluggable?

If it contains “settings.py”
it’s probably not pluggable.

Managing Pluggables

Maintain a reference directory for
pluggables
This allows access to sample
templates, documentation, etc.

Installing Pluggables
Many are dependent on Python
modules and other pluggable apps
Most pluggable apps and modules are
installed by “python setup.py install”
Others can be copied into your Python
path or project directory
Copy sample templates into your
project’s templates directory

Configuring

Pluggables normally hook into your
project via “settings.py” and “urls.py”
In “settings.py”, pluggables are added
to INSTALLED_APPS
In “urls.py”, add to urlpatterns

Blogging-Related

django-tagging

Query tag intersections and unions
Del.icio.us-style URL-based tag
queries
Template tags for display of tags and
tag clouds
Special tag widget for newforms

django-diario

Full-featured blogging pluggable
Leverages django-tagging
RSS/Atom feed support
XML sitemap support
Pretty permalinks

Basic Configuration
Move to project’s base directory
Add “diario” to INSTALLED_APPS
Issue “python manage.py syncdb”
Add “(r'^blog/', include
('diario.urls.entries')),” to urls.py
Copy templates from examples/
templates/simple to template directory

django-diario

User Management/
Feedback

django-contact-form

Solicits feedback from users and
visitors
Comes with no sample templates
Make sure to configure email settings
in your project (see Django project
documentaton)

Basic Configuration
Move to project’s base directory
Add “contact-form” to INSTALLED_APPS
in “settings.py”
Add “(r'^contact/', include
('contact_form.urls')),” to urls.py

Set ACCOUNT_ACTIVATION_DAYS
In your project’s templates directory,
three templates need to be created...

django-contact-form

Basic Configuration

Create contact_form/contact_form.txt
This is the email template and should
contain something like:

 {{ name }}
 {{ email }}
 {{ body }}

django-contact-form (cont.)

Basic Configuration
Create contact_form/contact_form.html
This is the form template and should
contain something like:

 <form method='POST'>
 {{ form.as_p }}
 <input type='submit' value='Send'>
 </form>

Put any message in contact_form/
contact_form_sent.html

django-contact-form (cont.)

django-registration

Provides standard user registration
form and email activation functionality
Users visit accounts/register to create
accounts
Comes with no sample templates
Again, make sure email is configured

Basic Configuration
Move to project’s base directory
Add “registration” to INSTALLED_APPS
Issue “python manage.py syncdb”
Add “(r'^accounts/', include
('registration.urls')),” to urls.py
In templates directory, five templates
need to be created

django-registration

Basic Configuration

Create registration/
registration_form.html:

 <form method='POST'>
 {{ form.as_p }}
 <input type='submit' value='Submit'>
 </form>

django-registration (cont.)

Basic Configuration
registration/registration_complete.html is
any form response message

registration/activation_email_subject.txt is
activation email subject

registration/activation_email.txt is text for
an email, should include “http://
www.mysite.com/accounts/activate/
{{ activation key }}”

registration/activate.html is activation
message

django-registration (cont.)

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

django-profiles

The standard Django auth module
provides the ability to define a profile
model that will store profile data for
each user
django-profiles provides a user
interface to this model
Comes with no sample templates

Basic Configuration

Move to project’s base directory
Add “profiles” to INSTALLED_APPS
You'll need to have made a site-
specific application
Define a profile model (see Chapter 12
of The Django Book, free online)

django-profiles

Basic Configuration
In mysite/models.py, for example, we could
put this profile model:

from django.contrib.auth.models import User

class MySiteProfile(models.Model):
 user = models.ForeignKey(User, unique=True)
 favorite_band = models.CharField(maxlength=100, blank=True)
 favorite_cheese = models.CharField(maxlength=100, blank=True)
 lucky_number = models.IntegerField()

 def get_absolute_url(self):
 return ('profiles_profile_detail',
 (), { 'username': self.user.username })
 get_absolute_url = models.permalink(get_absolute_url)

django-profiles (cont.)

Basic Configuration
In settings, add
AUTH_PROFILE_MODULE=
'mysite.MySiteProfile'
Issue “python manage.py syncdb”
Add “(r'^profiles/', include
('profiles.urls')),” to urls.py
In templates directory, four templates
need to be created

django-profiles (cont.)

Basic Configuration

Create profiles/create_profile.html:

<form method='POST'>
{{ form.as_p }}
<input type='submit' value='Send'>
</form>

Use same profile as above for
profiles/edit_profile.html

django-profiles (cont.)

Basic Configuration

Create profiles/profile_detail.html:

{{ profile.favorite_band }}

{{ profile.favorite_cheese }}

{{ profile.lucky_number }}

django-profiles (cont.)

Basic Configuration

Finally, create profiles/profile_list.html
(uses Django generic list view):

{% for profile in object_list %}
Name: {{ profile.user }}, Number:
{{ profile.lucky_number }}
{% endfor %}

django-profiles (cont.)

User-Driven Content
Apps

django-forum

SVN only, no installer
Leverages django-registration
Comes with sample templates

Basic Configuration
Move to project’s base directory

Add “forum” to INSTALLED_APPS

In settings.py, add FORUM_BASE='/forum'

Issue “python manage.py syncdb”

Add “(r'^forum/', include('forum.urls')),” to
urls.py

Copy sample templates into your template
directory

Add forum(s) via the Django admin

django-forum

Other Apps

django-lifestream
Aggregates feeds from Twitter, Flickr,
etc.
Requires dateutil and Universal Feed
Parser modules
Requires Python 2.5 (easy to hack for
2.4)
Requires cron hook for updates

django-geo

Adds location awareness to objects
Transparent geocoding

django-voting

Add voting functionality (Reddit, etc.)
Includes specialized generic views
(including one for AJAX)

Poke around!

Resources
This talk:
http://mikecantelon.com/story/
django_pluggable_applications

James Bennett on creating pluggable
applications:
http://www.b-list.org/weblog/2008/mar/15/
slides/

The Django Book:
http://www.djangobook.com

http://mikecantelon.com/story/django_pluggable_applications
http://mikecantelon.com/story/django_pluggable_applications
http://mikecantelon.com/story/django_pluggable_applications
http://mikecantelon.com/story/django_pluggable_applications
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/
http://www.b-list.org/weblog/2008/mar/15/slides/

