ike Cantelon

http://straight.com/
http://mikecantelon.com/

This Talk

Aims to orient you to the Sphinx realm

Code provided on mikecantelon.com to give
you basic Drupal Sphinx-driven search

What Is Sphinx?

Open source search engine
Developed by Andrew Aksyonoff

No Java required
(written in C++)

Mostly cross-platform
(Windows version not yet production ready)

Fast

Scalable
Flexible
Straightforward

Who Uses It?

NowPublic
MySQL

The Pirate Bay
Joomla
MiniNova

Etc...

http://www.sphinxsearch.com/powered.htmi

http://peter-zaitsev.livejournal.com/12809.html

Mnogosearch Sphinx

MySQL Boolean Fulltext Mnogosearch
MySQL Fulitext MySQL LIKE

How Does Sphinx Scale?

Distributed, parallel searching/indexing across
multiple agents

Agents can be machines (“horizontal scaling”)
or processors/cores (“vertical”)

Searches get first sent to remote agents

Distribution is transparent to the application:
any duplicate results are removed

One of Many Potential Sphinx Architectures

Sphinx Components and Installation

Installation is (usually) straightforward
(requires make and C++ compiler)

Jconfigure
NELG
make install

Sphinx consists of three components:
Search daemon (searchd command)
Indexer (indexer command)
Search client (search command)

Sphinx Index Fundamentals

Can have one or more data source

Sources include MySQL, MySQL Sphinx
storage engine, Postgres, xmlpipe2

Each source must share schema
Each document must have global ID
Indexes can be rotated seamlessly

Indexes end up taking much more disk space
than source text: plan accordingly!

Sphinx Index Options

UTF-8 encoding
Prefix and infix indexing for wildcard searches

HTML stripping

N-gram support for Chinese, Japanese, etc.
Multiple stemming schemes

Stop words

Word forms

Sphinx Stemming

Good stemming support

“Stemming” is the breaking down of words

Into their base form

In addition to stemming, Sphinx supports
Indexing via Soundex and Metatone

Multiple stemmers can be app

Optionally support for Snowba

International stemming algorit
(http://snowball.tartarus.org)

led
| project for

NIMS

Configuration

Sphinx Configuration Overview

/usr/local/etc/sphinx.conf is where Sphinx
configuration normally lives

Defines sources, indexes, and agents
Configuration file is in custom format

Sphinx Source Configuration

Source specifies:
Type
Connection info
Queries
Attributes

Contains three kinds of queries:

Main query (what you want to index; first column
must be document global ID)

Detail query (to fetch document details when
using search command)

Optional “range” query

Source Range Query

The range query is for pulling batches of rows,
iInstead off all rows at once

MyISAM has table-wide locking, so big queries
can bog things down

An example range query:
sql_query_range = SELECT MIN(nid),MAX(nid) FROM node

sql_range_step = 512
sql_range_step defines how many rows to
fetch on each pass

Sphinx Index And searchd Configuration

The index will specify a source, path, and
stemming/indexing options

Make sure the path you specify for your index
exists (for example: /var/opt/local/sphinx)

The searchd section will require a directory to
exist for logs, process ID file, etc.

This directory will usually be /var/log/searchd

Starting The Sphinx Search Daemon

searchd can be started by simply typing “sudo
searchd” into the command line

Once searchd is started, index a source by
entering “sudo indexer <name of source>"

Once your index Is created, enter “search -p
<some search term>" to test

“Seamless” indexing can be done by adding
the “--rotate” option when using indexer

Implementation

Example of a Sphinx Implementation

The “my _search” module, which will be
available for download on mikecantelon.com,
shows a simple use of Sphinx in Drupal

Sphinx Implementation Overview

Sp
AP

AP

ninx data is accessible through multiple
s: PHP, Python, Perl, Ruby, and Java

S provides optional search snippet

extraction, keyword highlighting, and result
Paging

Results return only document IDs

Hence, after searching returns results, you'll

still likely need to fetch details of documents
In result page

Sphinx Search Modes

S
S
S

D

D

D

_MATC
_MATC
_MATC

boolean AN
otherwise s

SPH MATC

phrase anc

SPH_MATC

_ALL: match all keywords
_ANY: match any keywords

_BOOLEAN: no relevance, implicit
D between keywords if not
pecified

_PHRASE: treats query as a
requires a perfect match

H EXTENDED: allows for
specification of phrases and/or keywords and
allows boolean operators

Example of PHP Client Connect

This example uses SPH_MATCH_EXTENDED:

// Note: searchd needs to be running

Scl = new SphinxClient ();
Scl->SetServer('localhost', 3312);
Scl->SetLimits ($Sstart_item, $items_per_page);
Scl->SetMatchMode (SPH MATCH EXTENDED) ;

Note the use of SetLimits to allow us to
Implement paging/limiting

Sphinx Sort Modes

Sphinx has a number of limited, specific
search modes :

SPH _SORT_RELEVANCE

SPH_SORT ATTR_DESC

SPH SORT ATTR ASC

SPH_SORT TIME_SEGMENTS
SPH SORT EXTENDED provides SQL-like
sorting, listing “columns” and specifying
ascending/descending order

SPH SORT EXPR allows sorting using a
mathematical equation involving “columns”

Example of PHP Client Sort and Query

This example sorts by relevance (most to
least), then by creation date (reverse
chronological order):

Scl->SetSortMode (SPH_SORT EXTENDED,
"@relevance DESC, created DESC");

// Do Sphinx query
Ssearch_ result = $cl->Query (

$query,
'stories'

) ;

Getting Fancier

Using the Sphinx PHP API Highlighter

Once you've received search results from
Sphinx, you can use API's highlighter to
generate excerpts and highlight matches
within the excerpts

To do this you must first retrieve the full text
of each of the documents shown on the
current results page

This will need to be done by database queries
or some kind of cache lookup

PHP APl Highlighter Example

In this example $content is an array
containing document IDs for keys and
document text for values:

Shighlighting options = array (

'before match' =>
"",
'after_match' => "",
'chunk_separator' => " ... ",
'"limit' => 256,
'around' => 3,

) ;

Sexcerpts = $cl->BuildExcerpts ($content,

'stories', Squery, Shighlighting options);

Humanizing SPH MATCH EXTENDED

SPH MATCH EXTENDED can be “humanized”
by parsing a user's query and breaking it into
phrases and keywords separated by a chosen
operator

For example: given the search query “uwe
boll” postal and the chosen search type
“match any”, we'd use boolean operator OR
between the extracted phrase and keyword

This would end up, internally, as “uwe boll”
postal (note the OR pipe character)

Implementing Humanization in PHP

One way to humanize via clumsy reqular
expression brutality:
Get keywords by using preg _split to split into

array using phrases (designated by double-
quotes) as splitting points

Get phrases by using preg match_all, matching
anything in double-quotes

Merge arrays

Implode using search operator with spaces on
either side (i.e. “ & “or “ | *)

What About Paging?

As Sphinx queries don't go through Drupal's
database abstraction functions, built in paging
won't work automagically, as when using
Drupal's pager query function

Writing paging logic that looks/acts identical
to Drupal's is tedious

You can, however, leverage Drupal's paging
functionality so theme pager will do your
bidding...

How to Leverage Drupal's Paging

Manually set globals to leverage paging:

Selement = O0;
SGLOBALS ['pager page_array'] =
explode(',', $_GET['page'l]);

SGLOBALS ['pager total_ items'][Selement] =
Sfound count;
SGLOBALS ['pager_ total'][Selement] =
ceil (Sfound count / $items_per page);
SGLOBALS ['pager page_array'] [Selement] =
max (0, min((int) SGLOBALS|['pager_ page_array']
[Selement], ((int) SGLOBALS]|['pager_ total']
[Selement]) - 1));

Multi-Value Attributes (MVAS)

Allow to you add Drupal taxonomy data to
Sphinx index
Implementation requires two things:

Addition of sql_attr multi specification in the
source section of your Sphinx configuration file

sql_attr multi tells how to query for taxonomy
Addition of SetFilter call in PHP API before issuing
query
SetFilter example filtering by two taxonomy
terms:
$cl->SetFilter('taqg’, array(114288, 4567));

MVA sqgl _attr multi Example

sql_attr multi = uint tag from ranged—-query; \
SELECT n.nid, td.tid FROM term data td INNER
JOIN term node tn \
USING (tid) INNER JOIN node n ON
tn.nid=n.nid \
WHERE td.vid=9 AND n.nid >= $start AND
n.nid <= $end; \
SELECT MIN(n.nid), MAX(n.nid) FROM term data
td INNER JOIN term node tn \
USING(tid) INNER JOIN node n ON
tn.nid=n.nid \
WHERE td.vid=9

We're donel

Online Resources

Official Sphinx site:

These slides and example module:

http://www.sphinxsearch.com/
http://mikecantelon.com/talks/sphinx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

